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Black Hole ± D-Brane Correspondence: An Example
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We explore the connection between D-branes and black holes in one particular
case: a D3-brane compactified to four dimensions on T6/Z3. Using the D-brane
boundary state description, we show the equivalence with a double extremal N 5
2 black hole solution of four-dimensional supergravity.

1. INTRODUCTION

The lack of a statistical mechanical theory of black hole thermodynamics

and the closely related problem of the black hole information paradox are

longstanding fundamental questions which can now be precisely addressed.

Explicit calculations are presently available due to the recent progress in

nonperturbat ive aspects of string theory (see ref. 1 for a summary and
references).

The idea of relating black holes to elementary string states is based on

their common property of having a large degeneracy of states. However,

while the entropy of a Schwarszchild black hole is proportional to the square

of its mass, the logarithm of the degeneracy of elementary string states
depends linearly on the mass of the states. It was suggested that this discrep-

ancy is due to the large mass renormalization suffered by the string states

due to quantum corrections, and thus could be avoided by BPS states in

superstring theories. Following the analogy, the BPS condition on the states

should correspond to the extremal condition on Reissner±NordstroÈ m black

holes.
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A key step in the recent developments was the realization that in

addition to the states described by string fluctuations, there are also soliton

states in string theory, D-branes. The main advantage of using D-branes

instead of perturbative string states is that the event horizon of the

corresponding black hole is nonsingular and has finite area. Thus the

entropy for these black holes can be computed unambiguously, and can

be compared with the corresponding microscopic answer obtained from

the counting of states of the D-brane. The two calculations turn out to

be in exact agreement, including the overall numerical factor. Explicit

calculations have been performed in many classes of black holes which

can be compared to different configurations of D-branes. This result was

obtained initially for a five-dimensional extremal black hole, and was

later extended to five-dimensional rotating black holes, slightly nonextremal

five-dimensional black holes, four-dimensional extremal, and slightly nonex-

tremal black holes. The five-dimensional case was considered first since

one only needs three nonzero charges to obtain an extremal black hole

with regular horizon in toroidal compactifications. In four dimensions one

needs four nonzero charges. For Calabi±Yau compactifications not all the

results of the toroidal case hold. In particular, four different charges are

no longer needed in four dimensions. Another characteristic of Calabi±Yau

compactifications is that single D-brane black holes are nonsingular. This

is because the brane is wrapped on a topologically nontrivial manifold

and therefore can intersect itself, thus avoiding the necessity of having

different branes in toroidal compactifications.

In this contribution we will explore the connection between D-branes

and black holes in one particular case. We will explicitly show how the

analogy can be carried through for a D3-brane compactified to four

dimensions on T 6/Z3 by providing the evidence that supports its identifica-

tion with a double extremal N 5 2 black hole in four dimensions. In

Section 2 we summarize the boundary state description of a D3-brane

wrapped on a 3-cycle of the T 6/Z3 orbifold, which was originally introduced

in ref. 2. We also recall the requirement imposed by the BPS condition,

namely that the cancellation of the force between two identical D-branes

in relative motion is due to the exchange of the N 5 2 graviton multiplet

containing the graviton and the graviphoton. This suggests that the classical

solution corresponding to this configuration is a Reissner±NordstroÈ m black

hole. In Section 3 we introduce the four-dimensional double extremal

black hole solution of N 5 2 supergravity obtained by compactifying ten-

dimensional type IIB supergravity on a Calabi±Yau threefold. We also

show in this section how the correspondence between this solution and

the D3-brane boundary state description can be established [3].
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2. D3-BRANES ON ORBIFOLDS

Let us consider a system of two D-branes in a type II superstring theory

compactified down to four dimensions in the interesting case of the Z3

orbifold, which breaks the supersymmetry down to N 5 2 (the branes further

break it to N 5 1) [4, 5]. This section is based on refs. 2 and 5, where

detailed calculations can be found.

The dynamics of these D-branes is determined by a one-loop amplitude

which can be conveniently evaluated in the boundary state formalism [6, 7].

In particular, one can compute the force between two D-branes moving with

constant velocity, extending Bachas’ result [8] to compactifications breaking

some supersymmetry [2]. This will be the key object to establish the D-

brane±black hole correspondence. Analyzing the large-distance behavior of

the interaction and its velocity dependence, it is possible to read the charges

with respect to the massless fields and relate the various D-brane configura-

tions to known solutions of the 4-dimensional low-energy effective

supergravity.

The amplitude for two D-branes moving with velocities V1 5 tanh v1,

V2 5 tanh v2 (say along 1) and transverse positions
-

Y 1,
-

Y 2 (along 2, 3), namely

! 5 #
`

0

dl o
s

^ B, V1,
-

Y 1 | e 2 lH | B, V2,
-

Y 2 & s (1)

is just a tree-level propagation between the two boundary states which are

defined to implement the boundary conditions specifying the branes. The

time is measured along the length of the cylinder l. There are two sectors,

RR and NSNS, corresponding to periodicity and antiperiodicity of the fer-

mionic fields around the cylinder, and after the GSO projection there are four

spin structures, R 6 and NS 6 , corresponding to all the possible periodicities of

the fermions on the covering torus.

Let us consider a D-particle in four-dimensional spacetime. In the static

case, the 0-brane has Neumann boundary conditions in time and Dirichlet in

space. The velocity twists the 0±1 directions and gives them rotated boundary

conditions. The moving boundary state is most simply obtained by boosting

the static one with a negative rapidity v 5 v1 2 v2 [9],

| B, V,
-

Y & 5 e 2 ivJ01
| B,

-
Y &

In the large-distance limit b ® ` only worldsheets with l ® ` will contribute,

and momentum or winding in the compact directions can be safely neglected

since they correspond to massive subleading components.
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The moving-bound ary states

| B, V1,
-

Y 1 & 5 # d 3 -
k

(2 p )3 ei
-

k ?
-

Y 1 | B, V1 & ^ | kB &

| B, V2,
-

Y 2 & 5 # d 3 -
q

(2 p )3 ei
-

q ?
-

Y 2 | B, V2 & ^ | qB &

can carry only space-time momentum in the boosted combinations to
k m

B 5 (sinh v1k
1, cosh v1k

1,
-

k T) and q m
B 5 (sinh v2q

1, cosh v2q
1,

-
q T). Notice

that because of their nonzero velocity, the branes can also transfer energy,

and not only momentum as in the static case.

Integrating over the bosonic zero modes and taking into account momen-

tum conservation (k m
B 5 q m

B), we find that the amplitude factorizes into a

bosonic and a fermionic piece:

! 5
1

sinh v #
`

0

dl # d 2 -
k T

(2 p )2 ei
-

k ?
-

b e 2 q2
B /2 o

s
ZBZ s

F

5
1

sinh v #
`

0

dl

2 p l
e 2 b2/2l o

s
ZBZ s

F (2)

with ZB,F 5 ^ B, V1 | e 2 lH | B, V2 & s
B,F. From now on, X m [ X m

osc.

It is very convenient to group the fields into pairs,

X 6 5 X0 6 X1 ® a n , b n 5 a0
n 6 a1

n

Xi, Xi* 5 X i 6 iXi 1 1 ® b i
n, b i*n 5 ai

n 6 iai 1 1
n , i 5 2, 4, 6, 8

x A ,B 5 c 0 6 c 1 ® x A ,B
n 5 c 0

n 6 c 1
n

x i, x i* 5 c i 6 i c i 1 1 ® x i
n, x i*n 5 c i

n 6 i c i 1 1
n , i 5 2, 4, 6, 8

with the commutation relations [ a m , b 2 n] 5 2 2 d mn, [ b i
m, b i*2 n] 5 2 d mn,

to { x A
m, x B

2 n} 5 2 2 d mn, { x i
m, x i*n } 5 2 d mn. For the RR zero modes, which

satisfy a Clifford algebra and are thus proportional to G -matrices, c m
o 5

i G m / ! 2, c Ä m
o 5 i G Ä m / ! 2, one can construct similarly the creation±

annihilation operators

a, a* 5
1

2
( G 0 6 G 1), bi, bi* 5

1

2
( 2 i G i 6 G i 1 1)

satisfying the usual algebra {a, a*} 5 {bi, bi*} 5 1 (and similarly for tilded

operators). In this way, any rotation or boost will reduce to a simple phase

transformation on the modes. In fact, for an orbifold rotation (ga 5 e2 p iza)

one has
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b a
n ® ga b a

n, x a
n ® ga x a

n, ba ® gab
a

b a*n ® g*a b a*n , x a*n ® g*a x a*n , ba* ® g*a ba* (3)

whereas for a boost of rapidity v,

a n ® e 2 v a n , x A
n ® e 2 v x A

n , a ® e 2 va

b n ® ev b n , x B
n ® ev x B

n , a* ® eva* (4)

The boundary state which solves the boundary conditions can be factor-

ized into a bosonic and a fermionic part; the latter can be further split into

zero-mode and oscillator parts, and finally

| B & 5 | B & b ^ | B0 & F ^ | Bosc & F

Let us now look at the internal coordinates. An orbifold compactification

can be obtained by identifying points in the compact part of spacetime which

are connected by discrete rotations g 5 exp(2 p i ( azaJaa 1 1) on some of the
compact pairs Xa, x a, a 5 4, 6, 8. In order to preserve at least one supersymme-

try, one has to impose ( a za 5 0.

Three cases can be considered: toroidal compactification on T6 (N 5 8

SUSY, z4 5 z6 5 z8 5 0) and orbifold compactification on T2 ^ T4/ Z2 (N 5
4 SUSY, z4 5 2 z6 5 1±2 , z8 5 0) and T6/Z3(N 5 2 SUSY, z4, z6 5 1±3,

2±3, z8 5
2 z4 2 z6).

The spectrum of the theory now contains additional twisted sectors, in

which periodicity is achieved only up to an element of the quotient group

ZN. These twisted states exist at fixed points of the orbifold, and can thus

occur only for 0-branes localized at one of the fixed points. We will not

discuss this case here (see ref. 2).

Finally, in all sectors, one has to project onto invariant states to get the
physical spectrum of the theory which is invariant under orbifold rotations.

In particular, the physical boundary state is given by the projection | Bphys & 5
( k | B, gk & /N, in terms of the twisted boundary states | B, gk & 5 gk | B &

Let us now concentrate in a particular 3-brane configuration. In the

static case, we take Neumann boundary conditions for time, Dirichlet for

space, and mixed for each pair of compact directions, say Neumann for the
a directions and Dirichlet for the a 1 1 directions.

The boundary state has to satisfy in the compact directions the follow-

ing conditions:

( b a
n 1 b Ä a*

2 n) | B & B 5 0, ( b a*n 1 b Ä a
2 n) | B & B 5 0

( x a
n 1 i h x Ä a*2 n) | Bosc, h & F 5 0, ( x a*n 1 i h x Ä a

2 n) | Bosc, h & F 5 0

(ba 1 i h bÄ a*) | B0, h & F 5 0, (ba* 1 i h bÄ a) | B0, h & F 5 0
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We define the spinor vacuum | 0 & ^ | 0Ä & such that ba | 0 & 5 bÄ a | 0Ä & 5 0. However,

the boundary state is not invariant under orbifold rotations, under which the

modes of the fields transform as in Eq. (3) and the spinor vacuum as | 0 & ^
| 0Ä & ® ga | 0 & ^ | 0Ä & . This was expected since a ZN rotation mixes two directions

with different boundary conditions, and thus the corresponding closed string

state does not need to be invariant under ZN rotations. One finds for the

compact part of the twisted boundary state

| B, V, ga & B 5 exp H 2
1

2 o
n . 0

(g2
a b a

2 n b Ä a
2 n 1 g*2

a b a*2 n b Ä a*2 n) J | 0 &

| Bosc, V, ga , h & F 5 exp H i h
2 o

n . 0

(g2
a x a

2 n x Ä a
2 n 1 g*2

a x a*2 n x Ä a*2 n) J | 0 & (5)

| B0, V, ga , h & RR 5 ga exp H 2 i h g*2
a ba*bÄ a* J | 0 & ^ | 0Ä &

After the GSO projection, the total partition functions for a given relative

angle wa turn out to be

ZB 5 16i sinh vq1/3f (q2)4 1

q 1(iv/ p | 2il)
P
a

sin p wa

q 1(wa | 2il)
(6)

ZF 5 q 2 1/3f (q2) 2 4 H q 2 1 i
v

p
| 2il 2 P

a
q 2(wa | 2il)

2 q 3 1 i
v

p
| 2il 2 P

a
q 3(wa | 2il) 1 q 4 1 i

v

p
| 2il 2 P

a
q 4(wa | 2il) J (7)

, H V 4, wa 5 0

V 2, wa Þ 0
(8)

Recall that to obtain the invariant amplitude, one has to average over all
possible angles wa.

In the large-distance limit l ® ` , explicit results with exact dependence

on the rapidity can be obtained from the above expression and compared to

a field theory computation. One finds the following behaviors, according to

the compactification scheme:

!(wa) , 4 P
a

cos p wa cosh v 2 cosh 2v 2 o
a

cos 2 p wa

! , H 4 cosh v 2 cosh 2v 2 3 , V 4, T 2 ^ T4/Z2, T6

cosh v 2 cosh 2v , V 2, T6 /Z3
(9)
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Let us now compare the large-distance interactions of the two moving

branes found from the string formalism with the field theory results. At large

distances we look for the Feynman graphs representing the exchange of
massless particles which can be either scalar, vector, or graviton. Since we

consider two branes of the same nature, the scalar and the graviton give

attraction, while the vector gives repulsion.

The net result in the static case is zero, since the branes are BPS states,

and this is what is obtained from the Riemann identity in the string formalism

[10]. But when the velocity is different from zero, the various contributions
are unbalanced. By comparing the velocity dependence with what is obtained

from Feynman graphs one can tell which kind of particles are actually coupled

to the branes in the various compactifications.

We treat the branes as spinless particles of mass and charge equal to 1.

The exchange of a scalar gives then

S 5
1

k2
’

(10)

where k is the momentum transfer between the two branes. In the so-called
eikonal approximation in which the branes go straight (which is the standard

setting for describing the branes’ interaction at nonsmall distances), k has

only space components and is orthogonal to
-

V .

The vector is coupled to the current, which in the eikonal approximation

is proportional to the momentum, J m (V ) [ (cosh(v), sinh(v)). Note that
J m k m 5 0. Taking one of the branes at rest, the vector exchange is

9 5 J m (V )J m (0)
1

k2
’

5 2
cosh(v)

k2
’

(11)

The graviton is coupled to the brane’ s energy-momentum tensor T m n 5 J m J n .

Therefore the graviton exchange in d dimensions is

& 5 2(T m n (V ) 2
h m n

d 2 2
T r s (V ) h r s )T m n (0)

1

k2
’

5
cosh(2v) 1 (d 2 4)/(d 2 2)

k2
’

(12)

Thus the nature of the various contributions to the branes’ interaction can

be read from the rapidity dependence of the l ® ` limit of the amplitude

(7), and is the following for d 5 4:

4cosh v 2 cosh 2v 2 3 Û N 5 8 grav. multiplet

cosh v 2 cosh 2v Û N 5 2 grav. multiplet (13)
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In the second case, the two branes interact through the exchange of the RR

vector and the universal graviton with no scalar exchange. In terms of the

N 5 2 SUSY theory these systems couple only to the graviton and its N 5
2 partner, the graviphoton. From the pattern of cancellation [11] these branes

seem to correspond to classical extremal Reissner±NordstroÈ m black holes.

We present the evidence to support this conjecture in the next section.

3. N 5 2 BLACK HOLE SUPERGRAVITY SOLUTIONS

BPS-saturated solutions of four-dimensional N 5 2 supergravity coupled

to N 5 2 vector multiplets have been discussed in many recent papers. The

simplest class of solutions is given by the double extremal N 5 2 black holes

with nonvanishing electric and magnetic charges. For this type of solution
the values of the scalar moduli fields which follow from a minimization of

the N 5 2 central charge take constant values over the entire spacetime. In

more general cases of nonconstant moduli, the internal space does not decou-

ple from the four-dimensional spacetime. In particular in static extremal N 5 2

black hole solutions the vector multiplet moduli vary over the uncompactified

space and one can argue that special or singular points in the internal space
are related to special or singular points in spacetime (like horizons or curva-

ture singularities).

The concept of a double-extremal black hole was introduced in ref. 12.

Nonextremal black holes have two horizons. When they coincide the black

hole is called extremal. As solutions of supergravities, the mass of the extremal
black hole depends on moduli as well as on quantized charges. Double-

extremal black holes are extremal, supersymmetric black holes with the

extremal value of the ADM mass equal to the Bertotti±Robinson mass. They

have constant moduli both for vector multiplets as well as for hypermultiplets,

but the electric and magnetic charges in each gauge group are unconstrained.

We will obtain a four-dimensional double-extremal black hole by compactify-
ing an exact solution of type IIB supergravity in 10 dimensions on a 3-cycle

of the generic threefold }CY
3 .

Let us start by considering the field equations of type IIB supergravity

in 10 dimensions, namely

RMN 5 TMN (14)

¹ MF MABCD
(5) 5 0 ¬ F

(5)
G1...G5 5

1

5!
e G1...G5H1...H5 F H1...H5 (15)

where TMN 5 1/(2 ? 4!)F
(5)
M ...F

(5)
N... is the traceless energy-momentum tensor of

the RR 4-form A(4) to which the 3-brane couples and F(5) is the corresponding

self-dual field strength. The tracelessness of TMN and the absence of couplings
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to the dilaton (see, for instance, ref. 13) allow for zero-curvature solutions

in 10 dimensions.

For the metric we make a block-diagonal ansatz. We take for the four-

dimensional part g(4)
m n the extremal RN black hole solution, which depends

only on the corresponding noncompact coordinates x m . The Ricci-flat compact

part depends only on the internal coordinates ya (this corresponds to choosing

the unique Ricci-flat KaÈ hler metric on }CY
3 ),

ds2 5 g(4)
m n (x) dx m dx n 1 g(6)

ab ( y) dya dyb (16)

In general, the compact components of the metric depend on the non-

compact coordinates x m through the moduli which parametrize the deforma-

tions of the Kahler class or the complex structure. In type IIB

compactifications such moduli belong to hypermultiplets and vector multi-

plets. In our case, however, where the Hodge number h(2,1) 5 0, there are

no vector multiplet scalars that would couple nonminimally to the gauge

fields, and the hypermultiplet scalars can be set to zero since they do not

couple to the unique gauge field, namely the graviphoton [therefore

gab(x, y) 5 gab( y)].

The 5-form field strength can be generically decomposed in the basis

of all the harmonic 3-forms of the CY manifold V (i, j)

F(5)(x, y) 5 F 0
(2)(x) ` V (3,0)( y) 1 o

h(2,1)

k 5 1

F k
(2)(x) ` V (2,1)

k ( y) 1 c.c. (17)

In the case at hand, however, only the graviphoton F 0
(2) appears in the general

ansatz (17), without any additional vector multiplet field strength F k
(2). We

conveniently normalize

F(5)(x, y) 5
1

! 2
F 0

(2)(x) ` ( V (3,0) 1 V Å (0,3)) (18)

Notice that this same ansatz is consistent for any double-extremal solution

even for a more generic CY.

With these ansaÈ tze, Eq. (14) reduces to the usual four-dimensional Ein-

stein equation with a graviphoton source. The compact part is identically

satisfied. The four-dimensional Lagrangian is obtained by carrying out the

explicit integration over the CY. Choosing an appropriate normalization for

V (3,0) and V Å (0,3) such that | V (3,0)|2 5 V 2
D3 /VCY (since the volume of the corres-

ponding 3-cycle is precisely the volume VD3 of the wrapped 3-brane) one

has [(za 5 1/ ! 2( ya 1 iya 1 1) and d 6y 5 id 3zd 3zÅ ]
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# CY

d 6y ! g(6) 5 VCY, i # CY

V (3,0) L V Å (0,3) 5 V 2
D3 5 # CY

d 6y ! g(6)| V (3,0)|2

(19)

and then

6 5
1

2k2
(4) # d 4x ! g(4) 1 R(4) 2

1

2 ? 2!
Im 100F

0
m n F

0 m n 2 (20)

where k2
(4) 5 k2

(10) /VCY and Im 100 5 V 2
D3 /VCY. In the general case, Eq. (17)

integration over the CY gives rise to a gauge field kinetic term of the standard

form: Im 1 L S F L F S 1 Re 1 L S F L *F S , where L , S 5 0, 1, . . . , h(1,2). As well

known (from now on F 0
(2) [ F), the four-dimensional Maxwell±Einstein

equations of motion following from this Lagrangian admit the extremal RN
black hole solution (in coordinates in which the horizon is located at r 5 0)

g00 5 2 1 1 1
k (4) M

r 2
2 2

, gmn 5 1 1 1
k (4) M

r 2
2

(21)

Fm0 5 k (4)e0
xm

r3 1 1 1
k (4) M

r 2
2 2

, Fmn 5 k (4)g0 e mnp
x p

r3

where m, n, p 5 1, 2, 3. The extremality condition is M 2 5 (e2 1 g2)/4,
where for later convenience we parametrize the solution with

M 5
m Ã

4
, e 5 e0 ! V 2

D3

VCY

5
m Ã

2
cos a , g 5 g0 ! V 2

D3

VCY

5
m Ã

2
sin a

(22)

The parameter m Ã is related to the 3-brane tension m through m Ã 5
! V 2

D3 /VCY m , and the angle a depends on the way the 3-brane is wrapped on

the CY. Notice that the charges with respect to the gauge field A m are e0 and
g0, but since the kinetic term and, corresponding ly, the propagator of A m are

not canonically normalized, the effective couplings appearing in a scattering

amplitude are rather e and g, which indeed satisfy the usual BPS condition.

Further, at the quantum level, e and g are quantized as a consequence of

Dirac’ s condition eg 5 2 p n; corresponding ly, the angle a can take only
discrete values and this turns out to be automatically implemented in the

compactification [14].

This ends the field theory side of the computation. Let us now compare

with the microscopic string theory description of the same black hole intro-

duced in the previous section.
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The interaction between two D3-branes compactified on T6/Z3 in relative

motion, Eqs. (7) and (9) for large impact parameters, can be rewritten as

! 5
m Ã2

4
(cosh v 2 cosh 2v) # dt D 3(r) (23)

where D 3(r) is the three-dimensional Green function, r 5 ! b2 1 sinh2 vt2,
and

-
b is the impact parameter. This four-dimensional configuration comes

from the effective action

6 5 # d 4x ! g 1 R 2
1

2
( - f )2 2

1

2 ? 2!
e 2 a f F 2

(2) 2 (24)

where a 5 0 for the RN black hole and a Þ 0 for the 0-brane. We concentrate

on the first case, for which the general electric extremal solution of this

Lagrangian is [16]

ds2 5 2 H(r) 2 2 dt2 1 H(r)2 d
-

x ? d
-

x , f 5 0, A0 5 2H(r) 2 1

(25)

where H(r) satisfies the three-dimensional Laplace equation and can be taken
to be of the form H(r) 5 1 1 k D 3(r). The relevant asymptotic long-range

fields are thus

h00 5 2k D 3(r), A0 5 2k D 3(r)

Comparing with Eq. (23), we find that the RN solution corresponds to k 5
m Ã/4.

An equivalent way of analyzing this configuration and providing more

elements to identify the D3-brane with the general RN 3 CY solution dis-

cussed before is to compute one-point functions ^ C & 5 ^ C | B & of the massless

fields of supergravity and compare them with the linearized long-range fields

of the supergravity RN black hole solution (21). This second method presents

the advantage of yielding direct information on the coulpings with the mass-
less fields of the low-energy theory.

Let us consider the case in which the internal directions of the D3-brane

form an arbitrary common angle u 0 with the Xa directions in each of the 3-

planes Xa, Xa 1 1 (actually, we could have chosen three different angles in the

3-planes, but only their sum will be relevant). The Z3 projection is imple-

mented by | B & 5 1±3 ( { D u } | B3( u 5 D u 1 u 0) & , where the sum is over D u 5 0,
2 p /3, 4 p /3. It is obvious from this formula that | B & is a periodic function of

the parameter u 0 with period 2 p /3. Therefore, the physically distinct values

of u 0 are in [0, 2 p /3] and define a one-parameter family of Z3-invariant

boundary states, corresponding to all the possible harmonic 3-forms on
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T 6/Z3, as we will see. Notice that requiring a fixed finite volume VD3 or the

3-cycle on which the D3-brane is wrapped implies discrete values for u 0

[14]. The compactification process restricts the momenta entering the Fourier
decomposition of | B & to belong to the momentum lattice of T6/Z3. Since

the massless supergraviton states | C & carry only spacetime momentum, the

compact part of the boundary state will contribute a volume factor which

turns the 10-dimensional D3-brane tension m 5 ! 2 p into the four-dimen-

sional black hole charge m Ã5 ! V 2
D3 /VCY m [14], and some trigonometric func-

tions of u 0 to be discussed below.
Using the technique of ref. 15, the relevant one-point functions on | B3( u ) &

for the graviton and 4-form states | h & and | A & can be computed and one finds,

by comparing with the boundary state result, that the electric and magnetic

charges are

e 5
m Ã

2
cos 3 u 0, g 5

m Ã

2
sin 3 u 0 (26)

Comparing with Eq. (22), one obtains a 5 3 u 0 and therefore the ratio between

e and g depends on the choice of the 3-cycle, as anticipated. Also, as explained,
only discrete values of u 0 naturally emerge requiring a finite volume.

Further evidence for the identifications (26) comes from the computation

of the electromagnetic phase shift between two of these configurations with

different u 0’ s, call them u 1,2. Since the four-dimensional electric and magnetic

charges of the two black holes are then different, there should be both an

even and an odd contribution to the phase shift coming from the corresponding
RR spin structures. Indeed, one correctly finds [14]

!even , m Ã2

4
cos 3( u 1 2 u 2) 5 e1e2 1 g1g2, (27)

!odd , m Ã2

4
sin 3( u 1 2 u 2) 5 e1g2 2 g1e2

Therefore the asymptotic gravitational and electromagnetic fields of the

RN black hole, Eqs. (21), are correctly reproduced. This confirms that our

boundary state describes a D3-brane wrapped on T 6/Z3, falling in the class

of regular four-dimensional RN double-extremal black holes obtained by

wrapping the self-dual D3-brane on a generic CY threefold. This boundary

state encodes the leading-order couplings to the massless fields of the theory,
and allows the direct determination of their long-range components, falling

off like 1/r in four dimensions. The subleading post-Newtonian corrections

to these fields arise instead as open string higher loop corrections, correspond-

ing to string worldsheets with more boundaries; from a classical field theory
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point of view, this is the standard replica of the source in the tree-level

perturbative evaluation of a nonlinear classical theory.

To conclude, let us comment that one could interpret the Z3-invariant
boundary state as describing the three-D3-brane superposition at angles

(2 p /3) in a T 6 compactification. As illustrated in ref. 17, such an intersection

preserves precisely 1/8 supersymmetry, as a single D3-brane does on T 6/Z3.

For toroidal compactification this is not enough, of course, because at least

four intersecting D3-branes are needed in order to get a regular solution [18].

Finally, since this extremal RN configuration is constructed by a single
D3-brane, the question naturally arises of understanding the microscopic

origin of its entropy.
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